27 research outputs found

    Transgenesis in Animal Agriculture: Addressing Animal Health and Welfare Concerns

    Get PDF
    The US Food and Drug Administration’s final Guidance for Industry on the regulation of transgenesis in animal agriculture has paved the way for the commercialization of genetically engineered (GE) farm animals. The production-related diseases associated with extant breeding technologies are reviewed, as well as the predictable welfare consequences of continued emphasis on prolificacy at the potential expense of physical fitness. Areas in which biotechnology could be used to improve the welfare of animals while maintaining profitability are explored along with regulatory schema to improve agency integration in GE animal oversight

    Genetically enhanced growth causes increased mortality in hypoxic environments

    No full text
    Rapid growth and development are associated with several fitness-related benefits. Yet, organisms usually grow more slowly than their physiological maximum, suggesting that rapid growth may carry costs. Here we use coho salmon (Oncorhynchus kisutch) eggs of wild and transgenic genotypes to test whether rapid growth causes reduced tolerance to low levels of oxygen (hypoxia). Eggs were exposed to four different durations of hypoxia, and survival and growth were recorded until the end of the larval stage. Survival rates decreased with increasing duration of hypoxia, but this decrease was most pronounced for the transgenic group. Larval mass was also negatively affected by hypoxia; however, transgenic genotypes were significantly larger than wild genotypes at the end of the larval stage. Oxygen can be a limiting factor for survival and development in a wide range of organisms, particularly during the egg stage. Thus, the reduced ability of fast-growing genotypes to cope with low oxygen levels identified in the present study may represent a general constraint on evolution of rapid growth across taxa

    Copepods act as switch between alternative trophic cascades in marine pelagic food webs

    No full text
    A recent meta-analysis indicates that trophic cascades (indirect effects of predators on plants via herbivores) are weak in marine plankton in striking contrast to freshwater plankton (Shurin et al. 2002, Ecol. Lett., 5, 785–791). Here we show that in a marine plankton community consisting of jellyfish, calanoid copepods and algae, jellyfish predation consistently reduced copepods but produced two distinct, opposite responses of algal biomass. Calanoid copepods act as a switch between alternative trophic cascades along food chains of different length and with counteracting effects on algal biomass. Copepods reduced large algae but simultaneously promoted small algae by feeding on ciliates. The net effect of jellyfish on total algal biomass was positive when large algae were initially abundant in the phytoplankton, negative when small algae were dominant, but zero when experiments were analysed in combination. In contrast to marine systems, major pathways of energy flow in Daphnia-dominated freshwater systems are of similar chain length. Thus, differences in the length of alternative, parallel food chains may explain the apparent discrepancy in trophic cascade strength between freshwater and marine planktonic systems

    Delayed Phenotypic Expression of Growth Hormone Transgenesis during Early Ontogeny in Atlantic Salmon (Salmo salar)?

    Get PDF
    Should growth hormone (GH) transgenic Atlantic salmon escape, there may be the potential for ecological and genetic impacts on wild populations. This study compared the developmental rate and respiratory metabolism of GH transgenic and non-transgenic full sibling Atlantic salmon during early ontogeny; a life history period of intense selection that may provide critical insight into the fitness consequences of escaped transgenics. Transgenesis did not affect the routine oxygen consumption of eyed embryos, newly hatched larvae or first-feeding juveniles. Moreover, the timing of early life history events was similar, with transgenic fish hatching less than one day earlier, on average, than their non-transgenic siblings. As the start of exogenous feeding neared, however, transgenic fish were somewhat developmentally behind, having more unused yolk and being slightly smaller than their non-transgenic siblings. Although such differences were found between transgenic and non-transgenic siblings, family differences were more important in explaining phenotypic variation. These findings suggest that biologically significant differences in fitness-related traits between GH transgenic and non-transgenic Atlantic salmon were less than family differences during the earliest life stages. The implications of these results are discussed in light of the ecological risk assessment of genetically modified animals
    corecore